UML Profile for Modeling Product Observation

Mathias Funk, Piet van der Putten, Henk Corporaal
Dept. of Electrical Engineering, Electronic Systems Group
Technical University Eindhoven, The Netherlands
Email: [m.funk, p.h.a.v.d.putten, h.corporaal]/@tue.nl

Abstract

Nowadays interactive electronics products offer
a huge functionality to prospective customers, but
often it is too huge and complezr to be grasped and
used successfully. In this case, customers obviate the
struggle and return the products to the shop. Also
the wvariability in scope and features of a product
is so large that an up-front specification becomes
hard if mot impossible. To avoid the problem of
an inadequate match between customer expectations
and designer assumptions, new sources of product
usage information have to be developed. One possi-
bility is to integrate observation functionality into
the products, continuously involving real users in
the product development process. The integration of
such functionality is an often overlooked challenge
that should be tackled with an appropriate engineer-
ing methodology. This paper presents on-going work
about a novel design for observation approach that
supports early observation integrations and enables
the cooperation with various information stakehold-
ers. We show how observation can be embedded
seamlessly in a model-driven development process
using UML. An industrial case-study shows the
feasibility of the approach.

1. Introduction

Complex innovative electronic products often fail
to satisfy customers’ needs. Products are too com-
plicated, thus too cumbersome to use. The inherent
functionality is often not relevant to user needs
and expectations. Increasing numbers of returned
technically sound products support this [1]. On the
other hand, nowadays products are hard to specify
because of their high complexity and because of
rapidly changing user demands. Also, due to faster
cycles, the product creation process cannot benefit
from traditional feedback channels any more. While

a couple of years ago, a product technology could
reach maturity within 10 to 20 cycles, thus allowing
for gradual improvements, todays products have to
accomplish the same within three cycles. Obviously,
delivering a mature product in this setting becomes
difficult.

Accordingly, complex interactive products
should be built for rapid changes. Products can be
adapted to changing needs during development and
even after release, in terms of firmware updates
and and the like. Still, targeting the product for
a certain user base is a major problem in the
industry [1]. One reason for this is the lack of
usage information which is reliable enough to base
the further development of the product on.

Our approach towards this problem is to build
observation modules into products. These products
are given to selected key testers who use the prod-
ucts in their habitual environment - an approach
promising to yield more representative data than
usability labs. The built-in observation modules can
be configured remotely and observe parts of the sys-
tem including user interaction, system performance
and potentially user satisfaction with the system
provided functionality.

This paper concentrates on the integration of
such observation facilities into products. We pro-
pose a model-driven technique to do this in an
efficient and structured way which is tailored to
current system development practices. After point-
ing at related work, we introduce product observa-
tion together with an industrial case-study. Subse-
quently, we show how observation-related parts of
the system can be modeled by means of a novel
UML profile. An overview on the development
approach for observation integration shows the ap-
plication of the modeling. The flow from system
models to the final runtime which features a built-
in observation system is described. The paper ends
with a conclusion and an outline of future steps.

An extended version of this paper covers the UML
profile for observation in full length [2].

2. Related work

The remote monitoring of products has been
done before, ranging in scope from the monitoring
of cars to building automation, computer programs,
mobile devices, and websites [3], [4], [5], [6]. How-
ever, our research is different in two important as-
pects: First, in our approach we assume that infor-
mation stakeholders are not willing to use complex
programming paradigms to achieve the sought-after
data, therefore we use a visual language to spec-
ify observation behavior in a domain-specific way.
Second, the integration of observation functionality
into the target system is described in a software
engineering process which is, in our opinion, nec-
essary for widespread use. On the technical level
we rely on the proven model-driven engineering
approach, but also try to apply more agile modeling
techniques like model interpretation [7] that allows
for dynamic adaptation of runtime systems without
the need for client compilation support. The mod-
eling of observation systems is performed using the
Unified Modeling Language (UML) [8] and, more
precisely, its profile extension mechanism [9].

Our approach towards “design for observation”
is related to “design for test”. The goal is to
enable evaluation of systems as early as possible
and throughout the development process. Signifi-
cant effort has to be spent before valuable data
emerges. However, design for test targets mainly
the scope of specification correctness within the
system, whereas design for observation aims at
the reduction of failures during interaction between
user and system.

3. Product usage observation

Our approach separates the concerns of (i) prod-
uct or system development and (ii) the specification
of what to observe and how to present the col-
lected data. In its application, product observation
involves accordingly two roles: the first role is a
system developer, concerned with the integration
of the observation module into the product. The
second role, the information stakeholder, specifies
observation in an easy and straight-forward pro-
cess. For information stakeholders, the proposed
approach opens a dedicated information channel
which provides potentially high quality data. Even

Specification Runtime

Y
S N)

M Editor Authoring and Visualization and M
Domain software Analysis Layer Analysis tools Domain

Expert Expert

Observation

Observed
specification

data
Management and
sever | Repesion Lyer

Observation Observed

specification data
Observation
component

Bl

B -
Observation module Observation module A
In(erac(ion> |

Product Product User

Observation Layer

Hooks |

Figure 1. Technical observation system overview

more importantly, the observation behavior can be
adapted remotely to changing information needs.

An observation system [10] consists of three main
layers: the authoring and analysis layer (AAL), the
management and repository layer (MRL), and the
observation layer (OL) (cf. Figure 1). On the first
layer, it can be specified what to observe and how to
process and present the collected information. The
MRL plays mainly the role of a middleware between
specification of observation and observation itself,
it transports observation specifications towards the
OL and the observed data from products back to
the AAL. The OL is the place where the actual
observation is carried out within the product in-
stances. From the development perspective, two
interesting things happen here: First, hooks have
to be integrated into the product. They repre-
sent places that can be observed, that is, they
are proxies to the actual places in hardware and
software where the actual data is generated. This
encapsulation helps to maintain a consistent inter-
face from product to observation module. Second,
observation specifications coming from the AAL
are transformed into executable runtime structures
and represent the logic of observation in a certain
scenario. The latter aspect is beyond the scope of
this paper and has been covered in [11].

3.1. A priori case study

We carried out case-studies to explore the do-
main of observation and build experience for devel-
oping an architecture. One of the studies together
with a large Dutch consumer electronics manufac-

turer shall be described briefly as an introductory
example to the domain of product usage observa-
tion.

Subject of the observation was a working proto-
type of an “internet on television” product with a
couple of novel features. Regarding those features,
the company had no market experience, so the main
goal was to explore the relevance of such a prod-
uct to customers. We integrated the observation
module partly by reverse-engineering the system for
appropriate observable items, partly by intrument-
ing available source code to provide data about
usage. Eventually, 20 product instances were given
to key testers located in 8 countries world-wide.
These people were asked to embed the product into
their home lifestyle and use it regularly for 6 weeks.
During that time, the observation system collected
in total 800.000 data items and moreover, we were
able to test the use case of changing observation
requirements successfully. This and other exper-
iments proved the applicability of the approach
and motivated the development of an engineering
approach for observation integration.

4. Modeling observation

Modeling of observation systems can be done
in the Unified Modeling Language (UML). This
language is an industry-wide standard for modeling
of hardware and software systems. UML models
are widely understood by developers in the com-
munity, and the modeling process benefits from
extensive tool support. UML offers a light-weight
extension mechanism, profiles, that is suitable for
building domain-specific UML models. This means
to project domain language semantics onto UML
by technically extending it with a dedicated set of
new concepts.

The observation profile as shown in Figure 2 is
basically divided into five sets of subprofiles that
correspond to the layers of an observation system
(cf. Section 3). While the upper 4 profile packages
are entirely concerned with the observer side of the
data collection process, the observation execution
profile package at the bottom of the figure involves
both observer and observee roles. There are two
sets of stereotypes, each concerning one of the two
roles in the observation integration sub profile. This
is especially interesting as the thin line between
the sets can be drawn right through this profile.
Both sets have a close relationship as observed
information is transmitted directly between sys-
tem parts which have complementing stereotypes

Observation Observation
Authoring Presentation
sy S 1
Observa}mn Observation
Authoring N
- Semantics 1 1
Environment =
OLsonation Observation
1 1 :I‘:Isuall_zatl_on Visualiser
Observation g bsg;vatl_o n
Simulator pecification
Formalization
Observation Observation
Management Repository

/1

Observation

Observation
Data Storage

Observation

Specification Data Access

Distribution

Observation Execution

Observation
Architecture

Observation
Data

Observation
Behavior

Observation
Integration

Figure 2. Observation profile (package view, depen-
dencies omitted)

applied to them. Inside the observation execution
package there are two packages concerned with
the architecture and integration of observation into
products. Another package deals with the observa-
tion behavior at runtime, and the remaining pack-
age provides structures for the observation data.

4.1. Observation integration subprofile

Observee
Observation

B e — Observation
Architecture ¢ Scenario ‘
Observation
Context
Observation
Data

HookData Hook o]

Observation
Integration

Figure 3. Integration profile

In the specification of observation, hooks are used
as information sources. However, hooks are only
abstract places where information can be perceived.
Therefore, on the system level, a «Hook» is re-
alized as a proxy element that encapsulates the
combination of an «Observable» element and its
observation-related properties, such as « Character-
isticy» and «Constraint». Characteristics cover tim-
ing properties and data types, constraints describe

runtime limitations of the observable. This meta-
information can be used to implement predictable
observation modules, or to simulate observation
behavior prior to deployment.

Hooks and observables are basically two different
views on the same entity. From the hook side,
only observation-related properties are shown and
other information, e.g. about the implementation,
is hidden - vice versa from the observable side. Both
concepts are aggregated in respective concepts,
«HookModel» and «Observee». While the Hook-
model denotes a collection of hooks, the Observee
is a system part which contains «Observabley el-
ements, but is itself not directly observable. This
stereotype can be used early in the development
to annotate system parts that should be observed,
and can be refined later to actual «Observable»s.
Another stereotype of the integration profile is the
«ObservationContext» which represents contextual
information belonging to observable or observee.
This information can (i) determine how the ob-
servable behaves, generates data, and responds to
triggering, and (ii) it can be part of the raw ob-
servation data that is generated by the observable.
All context information depends on the «Observa-
tionScenario». Such a scenario is a usage setting
and contains information about the enviroment the
product is used in as well as the user who interacts
with the product.

To further explain the relationship between
hooks and observables, interaction patterns in the
observation domain are shown in Figure 4. The
nature of hooks, being either self-triggering, ex-
ternally triggered, or both, suggests basically two
interaction patterns. The self triggering and the
externally triggered patterns are explained by using
the aforementioned stereotypes of «Observabley
and «Hook».

The first pattern is suitable for hooks which are
self-triggered, that is, the observable system struc-
ture autonomously triggers the respective hook
object whenever new information is perceived and
should be fed into the observation system. In this
pattern the responsibility of taking action lies on
the observee’s side.

The second pattern deals with hooks that have to
be triggered externally to produce data. Here, the
hook object has a link to the observable structure,
e.g. in the form of a public operation, and can
trigger the observable. In the rare case that an
observable has both characteristics, a combination
of those patterns is also possible.

Hooks, as their proxy nature suggests, connect

<<observable>>
trigger=self
EER— Hooklnterface

1: fire(observedData)

—67‘ —
<<observable>> <<hook>>
L] L
. v 2: route()
Self trigger

<<observable>> AN
trigger=external

HookInterf:
2: observedD: ieveData() ookintertace

<<observable>> L ‘ <<hook>>
1: fire()T 3: route()

External trigger

Figure 4. Interaction patterns, note the communica-
tion directions

observables to the respective interface in the ob-
servation module, the «HookInterface» as shown
in Figure 3. The observable element delivers raw
data to the interface, and inside the module this
interface presents the data to the observation com-
ponent. The component subsequently processes the
raw data according to the specified observation be-
havior. Obviously, the resulting data is determined
to a large extent by the observation system input
coming from hooks, thus the strong connection to
the «HookDatay stereotype (cf. Figure 3).

4.2. Observation architecture subprofile

The «HookInterface» is one of the main parts of
the observation architecture profile shown in Fig-
ure 5. The interface stereotype is a part of the «Ob-
servationModuley, namely being a sub stereotype
of «ObservationSubModule». Other sub modules
are concerned with the communication between
observation and repository layer (cf. Figure 1).

Observation Architecture

& Configurator —{ > ObservationSubModule <@ ObservationModule

4

Scheduler Userinterface

~— ObservationComponent

Observation Behavior

Hook

Observation Integration

Figure 5. Architecture profile

Two submodules deal with runtime behavior of

specified observation, the observation component.
The «Configurator» receives an observation speci-
fication and translates it into an executable «Ob-
servationComponent» which is run by the «Sched-
uler». The latter module is responsible for trigger-
ing of hooks and the synchronization of concurrent
events.

Both the architecture and the integration profiles
are shown here in an overview. Especially the archi-
tecture profile contains more elements, that struc-
ture the big building blocks depicted in Figure 5. In
the next section, the usage of the observation profile
will be described in an example development flow.

5. Development flow

The development of an observation system is a
model-driven process which is mainly supported
by the observation profile as shown above. The
actual usage of the profile shall be explained in
the context of development. Figure 6 shows the
basic development flow for system parts in the ob-
servation layer following the model-driven architec-
ture [12] approach: a platform-independent model
is transformed into a platform-specific model, both
extended by observation-specific meta information.
Then an additional weaving step integrates obser-
vation facilities, also modeled in UML, into the
platform-specific system model. Although these ob-
servation facilities could be modeled directly in
the system model, for later reuse, the modeling of
observation in a separate model is advisable. The
result of this step is a system model enriched with
observation facilities. This new model can directly
be used in the subsequent code generation step.

Additionally, a hook model is obtained from the
enriched system model. A hook model describes the
nature of all hooks present in the system which
can be used in the specification of observation. It is
necessary for (i) documentation of the observation
capabilities of the system and (ii) for the later
specification phase where it defines which hooks
can potentially be used and which properties they
might have.

The flow depicted in Figure 6 starts with the
application of the observation profile to system
models. Both platform-independent and platform-
specific UML models can make use of this profile
by application of the respective stereotypes. It is
advisable to integrate observation as early as possi-
ble into the development, going from rather coarse-
grained stereotypes like «Observee» to more fine-
grained ones such as «Observable». Generally it

Observation profile ‘

Platform- Platform- .
. i Observation
independent > specific L
facilities
model model

transformation \ / model weaving

System model with
transformation | ©Pservation facilities

code generation

/
| Hook Model I | Code I

Figure 6. Observation integration modeling flow

should be possible to attach stereotypes to parts of
both models as not all observation-related modeling
is necessarily platform-specific, and vice versa.

In order to weave system model and observation
model, first the observation facilities are retrieved
from the observation model and are inserted into
the system model. This is a simple merging of
model elements on the package level. In a second
step, all «Observable» stereotypes on parts of the
extended system model are identified and checked
against the observation facilities. This second step
of the weaving algorithm works as a tree traversal,
checking all model elements for applied observation
stereotypes. In case an element has the stereotype
«Observable» applied to it, it depends (i) on the
nature of the element and (ii) on the interaction
pattern (see section 4.1), what kind of connection
is introduced to the observation module (also see
below). In any case, a corresponding «Hook» is in-
troduced that encapsulates the different interaction
behaviors, data types and timing of observables.

The code generation step first creates structural
code for all model elements and large parts of
the observation module can already be generated.
This applies especially, if an implementation of the
observation module exists already for the target
platform. Moreover, a subset of the hooks might
be realized in a platform-independent fashion, and
thus can be reused. Otherwise, at least glue code
for hook implementations can be generated auto-
matically from the extended system model. In this
case the code generation step simply continues the
work of the weaving algorithm on the code level:
implementations are created for «Observable» and
«Hook» as far as possible. Finally, the developer
has to review the glue code in the observables and
add a few instructions to make the observables
deliver actual data.

6. Conclusion & Future work

Companies experience a lack of reliable, product-
specific usage information. We address the informa-
tion deficit by building observation modules into
products that are capable of providing usage infor-
mation directly from products in the field. A case-
study shows the applicability of the approach. Ob-
servation integration will potentially have a strong
impact on the development of future innovative
products, thus the need an engineering methodol-
ogy. This paper introduces a model-driven tech-
nique to integrate observation functionality into
products by means of a novel observation pro-
file. System models are enriched with observation-
specific concepts and a dedicated model of sup-
portive observation facilities is weaved into the
system model using the concepts as semantic links.
The result is an extended system model that can
be used in a final code generation step and that
documents the observation capabilities of the sys-
tem. The technique introduced here simplifies the
development tasks necessary for observation inte-
gration, thus reducing the effort for integration.
It helps to automate the process of observation
specification and data collection. Furthermore, we
see observation integration not as a simple parallel
development task only, but as a potential driving
force behind a new development paradigm: design
for observation. This involves observation as a first
class development aspect and helps to provide a
solid basis for extensive, but meaningful product
information presented to information stakeholders
in a comprehensive way.

Acknowledgments

This work is being carried out as part of the
“Managing Soft-Reliability in Strongly Innovative
Product Creation Processes” project, sponsored by
the Dutch Ministry of Economic Affairs under the
IOP-IPCR program.

References

[1] E. den Ouden, L. Yuan, P. J. M. Sonnemans, and
A. C. Brombacher, “Quality and reliability prob-
lems from a consumer’s perspective: an increasing
problem overlooked by businesses?” Quality and
Reliability Engineering International, vol. 22, no. 7,
pp- 821-838, 2006.

2]

[6]

[9]

[10]

[12]

M. Funk, P. H. A. van der Putten, and
H. Corporaal, “UML profile for modeling system
observation,” Eindhoven University of Technology,
Tech. Rep. ESR-2008-09, 2008. [Online]. Available:
http://www.es.ele.tue.nl/esreports/

H. Hartson and J. Castillo, “Remote evaluation for
post-deployment usability improvement,” Proceed-
ings of the working conference on Advanced visual
interfaces, pp. 22—29, 1998.

D. M. Hilbert and D. F. Redmiles, “An approach
to large-scale collection of application usage data
over the internet,” icse, vol. 00, p. 136, 1998.

K. Kabitzsch and V. Vasyutynskyy, “Architec-
ture and data model for monitoring of distributed
automation systems,” in Ist IFAC Symposium
on Telematics Applications In Automation and
Robotics, Helsinki, 2004.

E. Shifroni and B. Shanon, “Interactive user mod-
eling: An integrative explicit-implicit approach,”
User Modeling and User-Adapted Interaction,
vol. 2, no. 4, pp. 331-365, Dec. 1992. [Ounline].
Available: http://dx.doi.org/10.1007/BF01101109

J. Estublier and G. Vega, “Reuse and variability
in large software applications,” in ESEC/FSE-13:
Proceedings of the 10th Furopean software engi-
neering conference held jointly with 13th ACM SIG-
SOFT international symposium on Foundations of
software engineering. New York, NY, USA: ACM,
2005, pp. 316-325.

Object Management Group, “Unified mod-
eling language,” 2006. [Online]. Available:
http://www.uml.org

D. D’Souza, A. Sane, and A. Birchenough,
“First-class extensibility for UML-profiles, stereo-
types, patterns,” in UML’99 - The Unified
Modeling Language. Beyond the Standard.
Second International Conference, Fort Collins,
CO, USA, October 28-30. 1999, Proceedings,
R. France and B. Rumpe, Eds., vol. 1723.
Springer, 1999, pp. 265-277. [Online]. Available:
citeseer.ist.psu.edu/dsouza99firstclass.html

M. Funk, P. H. A. van der Putten, and H. Cor-
poraal, “Specification for user modeling with self-
observing systems,” in Proceedings of the First In-
ternational Conference on Advances in Computer-
Human Interaction, Saint Luce, Martinique, 2008.

M. Funk, P. H. A. van der Putten, and H. Corpo-
raal, “Model interpretation for executable obser-
vation specifications,” in Proceedings of the 20th
International Conference on Software Engineering
and Knowledge Engineering. Knowledge Systems
Institute, 2008.

D. Frankel, Model-Driven Architecture. New York,
NY, USA: OMG Press / Wiley, 2003.

